50 research outputs found

    Ultrasensitive Negative Feedback Control: A Natural Approach for the Design of Synthetic Controllers

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Many of the most important potential applications of Synthetic Biology will require the ability to design and implement high performance feedback control systems that can accurately regulate the dynamics of multiple molecular species within the cell. Here, we argue that the use of design strategies based on combining ultrasensitive response dynamics with negative feedback represents a natural approach to this problem that fully exploits the strongly nonlinear nature of cellular information processing. We propose that such feedback mechanisms can explain the adaptive responses observed in one of the most widely studied biomolecular feedback systems—the yeast osmoregulatory response network. Based on our analysis of such system, we identify strong links with a well-known branch of mathematical systems theory from the field of Control Engineering, known as Sliding Mode Control. These insights allow us to develop design guidelines that can inform the construction of feedback controllers for synthetic biological systems.This work was funded by the UK Engineering and Physical Sciences Research Council (EPSRC), grant number EP/I017445/1

    Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.This work was funded by the UK Engineering and Physical Sciences Research Council, grant number EP/I017445/1

    Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro.This work was supported partly by Wellcome Trust award WT085162AIA and BBSRC award BB/1024631/1

    Phosphate sink containing two-component signaling systems as tunable threshold devices.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tSynthetic biology aims to design de novo biological systems and reengineer existing ones. These efforts have mostly focused on transcriptional circuits, with reengineering of signaling circuits hampered by limited understanding of their systems dynamics and experimental challenges. Bacterial two-component signaling systems offer a rich diversity of sensory systems that are built around a core phosphotransfer reaction between histidine kinases and their output response regulator proteins, and thus are a good target for reengineering through synthetic biology. Here, we explore the signal-response relationship arising from a specific motif found in two-component signaling. In this motif, a single histidine kinase (HK) phosphotransfers reversibly to two separate output response regulator (RR) proteins. We show that, under the experimentally observed parameters from bacteria and yeast, this motif not only allows rapid signal termination, whereby one of the RRs acts as a phosphate sink towards the other RR (i.e. the output RR), but also implements a sigmoidal signal-response relationship. We identify two mathematical conditions on system parameters that are necessary for sigmoidal signal-response relationships and define key parameters that control threshold levels and sensitivity of the signal-response curve. We confirm these findings experimentally, by in vitro reconstitution of the one HK-two RR motif found in the Sinorhizobium meliloti chemotaxis pathway and measuring the resulting signal-response curve. We find that the level of sigmoidality in this system can be experimentally controlled by the presence of the sink RR, and also through an auxiliary protein that is shown to bind to the HK (yielding Hill coefficients of above 7). These findings show that the one HK-two RR motif allows bacteria and yeast to implement tunable switch-like signal processing and provides an ideal basis for developing threshold devices for synthetic biology applications.Exeter University Science Strateg

    STRONG: metagenomics strain resolution on assembly graphs

    Get PDF
    We introduce STrain Resolution ON assembly Graphs (STRONG), which identifies strains de novo, from multiple metagenome samples. STRONG performs coassembly, and binning into metagenome assembled genomes (MAGs), and stores the coassembly graph prior to variant simplification. This enables the subgraphs and their unitig per-sample coverages, for individual single-copy core genes (SCGs) in each MAG, to be extracted. A Bayesian algorithm, BayesPaths, determines the number of strains present, their haplotypes or sequences on the SCGs, and abundances. STRONG is validated using synthetic communities and for a real anaerobic digestor time series generates haplotypes that match those observed from long Nanopore reads

    Synthesizing and tuning chemical reaction networks with specified behaviours

    Full text link
    We consider how to generate chemical reaction networks (CRNs) from functional specifications. We propose a two-stage approach that combines synthesis by satisfiability modulo theories and Markov chain Monte Carlo based optimisation. First, we identify candidate CRNs that have the possibility to produce correct computations for a given finite set of inputs. We then optimise the reaction rates of each CRN using a combination of stochastic search techniques applied to the chemical master equation, simultaneously improving the of correct behaviour and ruling out spurious solutions. In addition, we use techniques from continuous time Markov chain theory to study the expected termination time for each CRN. We illustrate our approach by identifying CRNs for majority decision-making and division computation, which includes the identification of both known and unknown networks.Comment: 17 pages, 6 figures, appeared the proceedings of the 21st conference on DNA Computing and Molecular Programming, 201

    An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions

    Get PDF
    This is the final version. Available from BMC via the DOI in this recordAvailability of data and materials: The datasets supporting the conclusions of this article are available at the NCBI GEO website https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100226.BACKGROUND: The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. RESULTS: Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. CONCLUSIONS: Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans.This work was funded by the Defence Science and Technology Laboratory, award DSTLX-1000060221 (WP1)

    Evolution of Taxis Responses in Virtual Bacteria: Non-Adaptive Dynamics

    Get PDF
    Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore, there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E. coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated with as few as two components. The non-adaptive dynamics mediating taxis responses provide an explanation for experimental observations made in mutant strains of E. coli and in wild-type Rhodobacter sphaeroides that could not be explained with standard models. We speculate that such dynamics exist in other bacteria as well and play a role linking the metabolic state of the cell and the taxis response. The simplicity of mechanisms mediating such dynamics makes them a candidate precursor of more complex taxis responses involving adaptation. This study suggests a strong link between stimulus conditions during evolution and evolved pathway dynamics. When evolution was simulated under conditions of scarce and fluctuating stimulus conditions, the evolved pathway contained features of both adaptive and non-adaptive dynamics, suggesting that these two types of dynamics can have different advantages under distinct environmental circumstances

    Evolution under Fluctuating Environments Explains Observed Robustness in Metabolic Networks

    Get PDF
    A high level of robustness against gene deletion is observed in many organisms. However, it is still not clear which biochemical features underline this robustness and how these are acquired during evolution. One hypothesis, specific to metabolic networks, is that robustness emerges as a byproduct of selection for biomass production in different environments. To test this hypothesis we performed evolutionary simulations of metabolic networks under stable and fluctuating environments. We find that networks evolved under the latter scenario can better tolerate single gene deletion in specific environments. Such robustness is underlined by an increased number of independent fluxes and multifunctional enzymes in the evolved networks. Observed robustness in networks evolved under fluctuating environments was “apparent,” in the sense that it decreased significantly as we tested effects of gene deletions under all environments experienced during evolution. Furthermore, when we continued evolution of these networks under a stable environment, we found that any robustness they had acquired was completely lost. These findings provide evidence that evolution under fluctuating environments can account for the observed robustness in metabolic networks. Further, they suggest that organisms living under stable environments should display lower robustness in their metabolic networks, and that robustness should decrease upon switching to more stable environments

    Evolution of response dynamics underlying bacterial chemotaxis

    Get PDF
    © 2011 Soyer and Goldstein; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: The ability to predict the function and structure of complex molecular mechanisms underlying cellular behaviour is one of the main aims of systems biology. To achieve it, we need to understand the evolutionary routes leading to a specific response dynamics that can underlie a given function and how biophysical and environmental factors affect which route is taken. Here, we apply such an evolutionary approach to the bacterial chemotaxis pathway, which is documented to display considerable complexity and diversity.Results: We construct evolutionarily accessible response dynamics starting from a linear response to absolute levels of attractant, to those observed in current-day Escherichia coli. We explicitly consider bacterial movement as a two-state process composed of non-instantaneous tumbling and swimming modes. We find that a linear response to attractant results in significant chemotaxis when sensitivity to attractant is low and when time spent tumbling is large. More importantly, such linear response is optimal in a regime where signalling has low sensitivity. As sensitivity increases, an adaptive response as seen in Escherichia coli becomes optimal and leads to 'perfect' chemotaxis with a low tumbling time. We find that as tumbling time decreases and sensitivity increases, there exist a parameter regime where the chemotaxis performance of the linear and adaptive responses overlap, suggesting that evolution of chemotaxis responses might provide an example for the principle of functional change in structural continuity.Conclusions: Our findings explain several results from diverse bacteria and lead to testable predictions regarding chemotaxis responses evolved in bacteria living under different biophysical constraints and with specific motility machinery. Further, they shed light on the potential evolutionary paths for the evolution of complex behaviours from simpler ones in incremental fashion
    corecore